您现在的位置是:首页>要闻 > 正文

面面垂直的判定定理是什么 请问面面垂直怎样证明,请尽量详细些,谢谢

2023-12-09要闻

简介面面垂直的判定定理是什么?面面垂直的性质定理一共有四条,定理如下:1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂...

面面垂直的判定定理是什么?

面面垂直的性质定理一共有四条,定理如下:

1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

求解定理为,已知:

α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。

求证:

OP⊥β。

2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。

求解定理为,已知α⊥β,A∈α,AB⊥β。

求证:

AB⊂α。

3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。

求解定理为,已知:

α⊥γ,β⊥γ,α∩β=l。

求证:

l⊥γ。

4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。

(判定定理推论1的逆定理)求解定理为,已知α⊥β,a⊥β,a∉α。

求证a∥α。

请问面面垂直怎样证明,请尽量详细些,谢谢?

证明面面垂直,需证明一个面上的一条直线垂直于另一个面正面线面垂直,需证明该直线垂直于面上的两条不平行的直线这道题证平面EFO⊥平面CDF,证明面面垂直,需证明一个面上的一条直线垂直于另一个面,本题可通过证CD⊥平面EFO,来证面面垂直。

如何证明两个面垂直?

面面垂直的证明方法:

a⊥β,aα,则α⊥β。

1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

已知直线必须垂直于两平面的交线,才满足,如果平面内的这条直线与交线不是90度,那么它和另一平面也不是90度。

2、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。

公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。

显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。

两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。

3、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。

不在同一直线上的3点组成一平面是公理,所以取平行线上任意三点组成一个平面(1、2点在A线上,点3在B线上)。

然后证明平行线上的任何第四点(可能在A线,也可能在B线上),必定属于这个平面就好了。

如果第四点在A线上:

第四点与另两个点在同一条直线上,所以必定属于这个平面。